sábado, 16 de abril de 2011

PROPORCION AUREA EN UN ROSTRO


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Relación con los sólidos platónicos

El número áureo está relacionado con los sólidos platónicos, en particular con el icosaedro y el dodecaedro, cuyas dimensiones están dadas en términos del número áureo. Los 12 vértices de un icosaedro con aristas de longitud 2, pueden darse en coordenadas cartesianas por los siguientes puntos: (0, ±1, ±φ), (±1, ±φ, 0), (±φ, 0, ±1)
Los 20 vértices de un dodecaedro con aristas de longitud 2/φ=√5−1, también se pueden dar en términos similares: (±1, ±1, ±1), (0, ±1/φ, ±φ), (±1/φ, ±φ, 0), (±φ, 0, ±1/φ)
Las 12 esquinas de los rectángulos coinciden con los centros de las caras de un dodecaedro.
Para un dodecaedro con aristas de longitud a, su volumen y su área total se pueden expresar también en términos del número áureo:
A = 3\sqrt{15 +20\varphi} \cdot a^2
V = \frac {4 + 7\varphi}{2} \cdot a^3
Si tres rectángulos áureos se solapan paralelamente en sus centros, las 12 esquinas de los rectángulos áureos coinciden exactamente con los vértices de un icosaedro, y con los centros de las caras de un dodecaedro:
El punto que los rectángulos tienen en común es el centro tanto del dodecaedro como del icosaedro.

En el pentagrama

Pentagrama que ilustra algunas de las razones áureas: los segmentos rojo y azul, azul y verde, verde y morado.
El número áureo tiene un papel muy importante en los pentágonos regulares y en los pentagramas. Cada intersección de partes de un segmento, interseca a otro segmento en una razón áurea.
El pentagrama incluye diez triángulos isóceles: cinco acutángulos y cinco obtusángulos. En ambos, la razón de lado mayor y el menor es φ. Estos triángulos se conocen como los triángulos áureos.
Teniendo en cuenta la gran simetría de este símbolo se observa que dentro del pentágono interior es posible dibujar una nueva estrella, con una recursividad hasta el infinito. Del mismo modo, es posible dibujar un pentágono por el exterior, que sería a su vez el pentágono interior de una estrella más grande. Al medir la longitud total de una de las cinco líneas del pentáculo interior, resulta igual a la longitud de cualquiera de los brazos de la estrella mayor, o sea Φ. Por lo tanto el número de veces en que aparece el número áureo en el pentagrama es infinito al anidar infinitos pentagramas.

[editar] El teorema de Ptolomeo y el pentágono

Se puede calcular el número áureo usando el teorema de Ptolomeo en un pentágono regular.
Claudio Ptolomeo desarrolló un teorema conocido como el teorema de Ptolomeo, el cual permite trazar un pentágono regular mediante regla y compás. Aplicando este teorema un cuadrilátero es formado al quitar uno de los vértices del pentágono, Si las diagonales y la base mayor miden b, y los lados y la base menor miden a, resulta que b2 = a2 + ab lo que implica:
{b \over a}={{(1+\sqrt{5})}\over 2}\,.

El rectángulo áureo de Euclides


Euclides obtiene el rectángulo áureo AEFD a partir del cuadrado ABCD. El rectángulo BEFC es asimismo áureo.
El rectángulo AEFD es áureo porque sus lados AE y AD están en la proporción del número áureo. Euclides en su proposición 2.11 de Los elementos obtiene su construcción.>
 GC = \sqrt{5}
Con centro en G se obtiene el punto E, y por lo tanto
GE=GC=\sqrt{5}
resultando evidente que
 AE = AG + GE = 1 + \sqrt{5}
de donde, finalmente
\frac{AE}{AD} = \frac{1 + \sqrt{5}}{2}= \varphi
Por otra parte, los rectángulos AEFD y BEFC son semejantes, de modo que este último es asimismo un rectángulo áureo.

Generación de un rectángulo áureo a partir de otro.